If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2y^2+12y-12=0
a = -2; b = 12; c = -12;
Δ = b2-4ac
Δ = 122-4·(-2)·(-12)
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-4\sqrt{3}}{2*-2}=\frac{-12-4\sqrt{3}}{-4} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+4\sqrt{3}}{2*-2}=\frac{-12+4\sqrt{3}}{-4} $
| 20x²-11x-3=0 | | 7m+8=2m-37 | | (x-5)/9=1-x/5 | | 7x-3=3x+5= | | 2p=7p+13 | | +19x2=100 | | 5(3p-9)=8p+4 | | X²-2x+41=0 | | 15(10x+15)=17 | | 200m-100m+53,075=55,550-175m | | 12(6x-8)=11 | | 9r+3-6r-2=-2r=+8 | | 7x+17.5=3.5 | | 8x=5(-2x+2) | | 6x+7=-39 | | 3a+15=90 | | 5x+10=–30 | | 4x-72=-39 | | 3m^2–35m=0 | | 4r^2+16r+17=0 | | 4s-25=55 | | 3a+6=a-8 | | 0=4c^2+6c | | −x^2/5+15=0 | | +2x4=100 | | −x25+15=0 | | (X-35)+(x-46)1/2x=360 | | 5m=8.6 | | 3s+2=38 | | 2x(4)=100 | | 7(m-7)=63 | | 12w-12=12 |